高一數(shù)學(xué)學(xué)習(xí) 培養(yǎng)興趣是關(guān)鍵
2009-09-27 15:03:30網(wǎng)絡(luò)資源
高一數(shù)學(xué)學(xué)習(xí) 培養(yǎng)興趣是關(guān)鍵
進(jìn)入高中以后,往往有不少同學(xué)不能適應(yīng)數(shù)學(xué)學(xué)習(xí),進(jìn)而影響到學(xué)習(xí)的積極性,甚至成績(jī)一落千丈。出現(xiàn)這樣的情況,原因很多。但主要是由于學(xué)生不了解高中數(shù)學(xué)教學(xué)內(nèi)容特點(diǎn)與自身學(xué)習(xí)方法有問題等因素所造成的。在此結(jié)合高中數(shù)學(xué)教學(xué)內(nèi)容的特點(diǎn),談一下高中數(shù)學(xué)學(xué)習(xí)方法,供同學(xué)參考。
一、 高中數(shù)學(xué)與初中數(shù)學(xué)特點(diǎn)的變化
1、數(shù)學(xué)語言在抽象程度上突變
初、高中的數(shù)學(xué)語言有著顯著的區(qū)別。初中的數(shù)學(xué)主要是以形象、通俗的語言方式進(jìn)行表達(dá)。而高一數(shù)學(xué)一下子就觸及非常抽象的集合語言、邏輯運(yùn)算語言、函數(shù)語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學(xué)生產(chǎn)生數(shù)學(xué)學(xué)習(xí)障礙的另一個(gè)原因是高中數(shù)學(xué)思維方法與初中階段大不相同。初中階段,很多老師為學(xué)生將各種題建立了統(tǒng)一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么等。因此,初中學(xué)習(xí)中習(xí)慣于這種機(jī)械的,便于操作的定勢(shì)方式,而高中數(shù)學(xué)在思維形式上產(chǎn)生了很大的變化,數(shù)學(xué)語言的抽象化對(duì)思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應(yīng),故而導(dǎo)致成績(jī)下降。
3、知識(shí)內(nèi)容的整體數(shù)量劇增
高中數(shù)學(xué)與初中數(shù)學(xué)又一個(gè)明顯的不同是知識(shí)內(nèi)容的“量”上急劇增加了,單位時(shí)間內(nèi)接受知識(shí)信息的量與初中相比增加了許多,輔助練習(xí)、消化的課時(shí)相應(yīng)地減少了。
4、知識(shí)的獨(dú)立性大
初中知識(shí)的系統(tǒng)性是較嚴(yán)謹(jǐn)?shù),給我們學(xué)習(xí)帶來了很大的方便。因?yàn)樗阌谟洃,又適合于知識(shí)的提取和使用。但高中的數(shù)學(xué)卻不同了,它是由幾塊相對(duì)獨(dú)立的知識(shí)拼合而成(如高一有集合,命題、不等式、函數(shù)的性質(zhì)、指數(shù)和對(duì)數(shù)函數(shù)、指數(shù)和對(duì)數(shù)方程、三角比、三角函數(shù)、數(shù)列等),經(jīng)常是一個(gè)知識(shí)點(diǎn)剛學(xué)得有點(diǎn)入門,馬上又有新的知識(shí)出現(xiàn)。因此,注意它們內(nèi)部的小系統(tǒng)和各系統(tǒng)之間的聯(lián)系成了學(xué)習(xí)時(shí)必須花力氣的著力點(diǎn)。
二、如何學(xué)好高中數(shù)學(xué)
1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
2、及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法
學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數(shù)學(xué)題時(shí),也要注意解題思維策略問題,經(jīng)常要思考:選擇什么角度來進(jìn)入,應(yīng)遵循什么原則性的東西。高中數(shù)學(xué)中經(jīng)常用到的數(shù)學(xué)思維策略有:以簡(jiǎn)馭繁、數(shù)形結(jié)合、進(jìn)退互用、化生為熟、正難則反、倒順相還、動(dòng)靜轉(zhuǎn)換、分合相輔等。
3、逐步形成 “以我為主”的學(xué)習(xí)模式
數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動(dòng)地參與學(xué)習(xí)過程,養(yǎng)成實(shí)事求是的科學(xué)態(tài)度,獨(dú)立思考、勇于探索的創(chuàng)新精神;正確對(duì)待學(xué)習(xí)中的困難和挫折,敗不餒,勝不驕,養(yǎng)成積極進(jìn)取,不屈不撓,耐挫折的優(yōu)良心理品質(zhì);在學(xué)習(xí)過程中,要遵循認(rèn)識(shí)規(guī)律,善于開動(dòng)腦筋,積極主動(dòng)去發(fā)現(xiàn)問題,注重新舊知識(shí)間的內(nèi)在聯(lián)系,不滿足于現(xiàn)成的思路和結(jié)論,經(jīng)常進(jìn)行一題多解,一題多變,從多側(cè)面、多角度思考問題,挖掘問題的實(shí)質(zhì)。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。對(duì)課本知識(shí)既要能鉆進(jìn)去,又要能跳出來,結(jié)合自身特點(diǎn),尋找最佳學(xué)習(xí)方法。
4、針對(duì)自己的學(xué)習(xí)情況,采取一些具體的措施
(1) 記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。
(2) 建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。
(3) 熟記一些數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論,使自己平時(shí)的運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度。
(4) 經(jīng)常對(duì)知識(shí)結(jié)構(gòu)進(jìn)行梳理,形成板塊結(jié)構(gòu),實(shí)行“整體集裝”,如表格化,使知識(shí)結(jié)構(gòu)一目了然;經(jīng)常對(duì)習(xí)題進(jìn)行類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題歸納于同一知識(shí)方法。
(5) 閱讀數(shù)學(xué)課外書籍與報(bào)刊,參加數(shù)學(xué)學(xué)科課外活動(dòng)與講座,多做數(shù)學(xué)課外題,加大自學(xué)力度,拓展自己的知識(shí)面。
(6) 及時(shí)復(fù)習(xí),強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,進(jìn)行適當(dāng)?shù)姆磸?fù)鞏固,消滅前學(xué)后忘。
(7) 學(xué)會(huì)從多角度、多層次地進(jìn)行總結(jié)歸類。如:①從數(shù)學(xué)思想分類②從解題方法歸類③從知識(shí)應(yīng)用上分類等,使所學(xué)的知識(shí)系統(tǒng)化、條理化、專題化、網(wǎng)絡(luò)化。
(8) 經(jīng)常在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識(shí),數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時(shí),是否也用到過。
(9) 無論是作業(yè)還是測(cè)驗(yàn),都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學(xué)好數(shù)學(xué)的重要問題。
對(duì)新初三學(xué)生來說,學(xué)好數(shù)學(xué),首先要抱著濃厚的興趣去學(xué)習(xí)數(shù)學(xué),積極展開思維的翅膀,主動(dòng)地參與教育全過程,充分發(fā)揮自己的主觀能動(dòng)性,愉快有效地學(xué)數(shù)學(xué)。
其次要掌握正確的學(xué)習(xí)方法。鍛煉自己學(xué)數(shù)學(xué)的能力,轉(zhuǎn)變學(xué)習(xí)方式,要改變單純接受的學(xué)習(xí)方式,要學(xué)會(huì)采用接受學(xué)習(xí)與探究學(xué)習(xí)、合作學(xué)習(xí)、體驗(yàn)學(xué)習(xí)等多樣化的方式進(jìn)行學(xué)習(xí),要在教師的指導(dǎo)下逐步學(xué)會(huì)“提出問題—實(shí)驗(yàn)探究—開展討論—形成新知—應(yīng)用反思”的學(xué)習(xí)方法。這樣,通過學(xué)習(xí)方式由單一到多樣的轉(zhuǎn)變,我們?cè)趯W(xué)習(xí)活動(dòng)中的自主性、探索性、合作性就能夠得到加強(qiáng),成為學(xué)習(xí)的主人。