Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考資源網(wǎng) > 高中教案 > 高三數(shù)學教案 > 高三數(shù)學教案:三角函數(shù)二

電子課本

高考真題

高考模擬題

高中試卷

高中課件

高中教案

高三數(shù)學教案:三角函數(shù)二

來源:網(wǎng)絡整理 2024-12-08 20:55:49


高考

  高三這年,其重要性,是不言而喻的。高考網(wǎng)陸續(xù)的整理了一些全國各省市優(yōu)秀教案供廣大考生參考。

  知識目標:

  1.理解銳角的正弦函數(shù)、余弦函數(shù)、正切函數(shù)、余切函數(shù)的意義.

  2.會由直角三角形的邊長求銳角的正、余弦,正、余切函數(shù)值.

  能力、情感目標:

  1.經(jīng)歷由情境引出問題,探索掌握數(shù)學知識,再運用于實踐過程,培養(yǎng)學生學數(shù)學、用數(shù)學的意識與能力。

  2.體會數(shù)形結(jié)合的數(shù)學思想方法。

  3.培養(yǎng)學生自主探索的精神,提高合作交流能力。

  重點、難點:

  1.直角三角形銳角三角函數(shù)的意義。

  2.由直角三角形的邊長求銳角三角函數(shù)值。

  教學過程:

  一、創(chuàng)設(shè)情境

  前面我們利用相似和勾股定理解決一些實際問題中求一些線段的長度問題。但有些問題單靠相似與勾股定理是無法解決的。同學們放過風箏嗎?你能測出風箏離地面的高度嗎?

  學生討論、回答各種方法。教師加以評論。

  總結(jié):前面我們學習了勾股定理,對于以上的問題中,我們求的是BC的長,而的AB的長是可知的,只要知道AC的長就可要求BC了,但實際上要測量AC是很難的。因此,我們換個角度,如果可測量出風箏的線與地面的夾角,能不能解決這個問題呢?學了今天這節(jié)課的內(nèi)容,我們就可以很好地解決這個問題了。

 。ㄓ梢粋學生比較熟悉的事例入手,引起學生的學習興趣,調(diào)動起學生的學習熱情。由此導入新課)

  二、新課講述:

  在Rt△ABC中與Rt△A1B1C1中∠C=90°, C1=90°∠A=∠A1,∠A的對邊、斜邊分別是BC、AB,∠A1的對邊、斜邊分別是B1C1、A1B2 (學生探索,引導學生積極思考,利用相似發(fā)現(xiàn)比值相等)

 。 )

  若在Rt△A2B2C2中,∠A2=∠A,那么

  問題1:從以上的探索問題的過程,你發(fā)現(xiàn)了什么?(學生討論)

  結(jié)論:這說明在直角三角形中,只要一個銳角的大小不變,那么無論這個直角三角形的大小如何,該銳角的對邊與斜邊的比值是一個固定值。

  在一個直角三角形中,只要角的大小一定,它的對邊與斜邊的比值也就確定了,與這個角所在的三角形的大小無關(guān),我們把這個比值叫做這個角的正弦,即∠A的正弦= ,記作sin A,也就是:sin A=

  幾個注意點:①sin A是整體符號,不能所把看成sinA;②在一個直角三角形中,∠A正弦值是固定的,與∠A的.兩邊長短無關(guān),當∠A發(fā)生變化時,正弦值也發(fā)生變化;③sin A表示用一個大寫字母表示的一個角的正弦,對于用三個大寫字母表示的角的正弦時,不能省略角的符號“∠”;例如表示“∠ABC”的正弦時,應該寫成“sin∠ABC”;④ Sin A= 可看成一個等式。已知兩個量可求第三個量,因此有以下變形:a=csinA,c=

  由此我們又可以知道,在直角三角形中,當一個銳角的大小保持不變時,這個銳角的鄰邊與斜邊、對邊與鄰邊、鄰邊與對邊的比值也是固定的分別叫做余弦、正切、余切。

  在Rt△ABC中

  ∠A的鄰邊與斜邊的比值是∠A的余弦,記作

  ∠A的對邊與鄰邊的比值是∠A的正切,記作

  ∠A的鄰邊與對邊的比值是∠A的余切,記作

 。ㄒ陨峡梢杂蓪W生自行看書,教師簡單講述)

  銳角三角函數(shù):以上隨著銳角A的角度變化,這些比值也隨著發(fā)生變化。我們把sinA、csA、tanA、ctA統(tǒng)稱為銳角∠A的三角函數(shù)

  問題2:觀察以上函數(shù)的比值,你能從中發(fā)現(xiàn)什么結(jié)論?

  結(jié)論:①、銳角三角函數(shù)值都是正實數(shù);

  ②、0<sinA<1,0<csA<1;

 、邸anActA=1。

  三、實踐應用

  例1 求出如圖所示的Rt△ABC中∠A的四個三角函數(shù)值

  解

  問題3:以上例子中,若求sin B、tan B 呢?

  問題4:已知:在直角三角形ABC中,∠C=90&rd;,sin A=4/5,BC=12,求:AB和cs A

 。▎栴}3、4從實例加深學生對銳角三角函數(shù)的理解,以此再加以突破難點)

  四、交流反思

  通過這節(jié)課的學習,我們理解了在直角三角形中,當銳角一定時,它的對邊與斜邊、鄰邊與斜邊、對邊與鄰邊、鄰邊與對邊的比值是固定的,這幾個比值稱為銳角三角函數(shù),它反映的是兩條線段的比值;它提示了三角形中的邊角關(guān)系。

  五、課外作業(yè):

  同步練習

       相關(guān)推薦:


  高三數(shù)學教案匯總


  高三數(shù)學一輪復習教案:《集合及其基本運算》

 

最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等

高考時間線的全部重要節(jié)點

盡在"高考網(wǎng)"微信公眾號

收藏

高考院校庫(挑大學·選專業(yè),一步到位!)

高校分數(shù)線

專業(yè)分數(shù)線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 revolutshibainupartnership.com . All Rights Reserved

知識商店