高考復(fù)習(xí)函數(shù)定義域與值域知識點(diǎn)
來源:網(wǎng)絡(luò)資源 2019-05-07 09:53:27
定義域指該函數(shù)的有效范圍,其關(guān)于原點(diǎn)對稱是指它有效值關(guān)于原點(diǎn)對稱,以下是函數(shù)定義域與值域知識點(diǎn),希望對考生有幫助。
定義域
(高中函數(shù)定義)設(shè)A,B是兩個(gè)非空的數(shù)集,如果按某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個(gè)函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域。
值域
名稱定義
函數(shù)中,應(yīng)變量的取值范圍叫做這個(gè)函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合。
常用的求值域的方法
(1)化歸法;(2)圖象法(數(shù)形結(jié)合);(3)函數(shù)單調(diào)性法;(4)配方法;(5)換元法;(6)反函數(shù)法(逆求法);(7)判別式法;(8)復(fù)合函數(shù)法;(9)三角代換法;(10)基本不等式法等
關(guān)于函數(shù)值域誤區(qū)
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本“元件”。平時(shí)數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強(qiáng)化定義域問題的同時(shí),往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數(shù)的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)模^不能厚此薄皮,何況它們二者隨時(shí)處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個(gè)角度來講,求值域的問題有時(shí)比求定義域問題難,實(shí)踐證明,如果加強(qiáng)了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認(rèn)識。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。“值域”是所有函數(shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而“范圍”則只是滿足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿足這個(gè)條件)。也就是說:“值域”是一個(gè)“范圍”,而“范圍”卻不一定是“值域”。
相關(guān)推薦
- 高考數(shù)學(xué)空間向量知識點(diǎn)
- 高考數(shù)學(xué)復(fù)習(xí)古典概型知識點(diǎn)
- 高考數(shù)學(xué)復(fù)習(xí)不等式的解法知識點(diǎn)
- 高考數(shù)學(xué)平面向量的線性運(yùn)算知識點(diǎn)
- 高考數(shù)學(xué)抽樣方法知識點(diǎn)
- 高考數(shù)學(xué)對數(shù)函數(shù)的性質(zhì)與定義
- 數(shù)學(xué)高考三角函數(shù)易錯(cuò)知識點(diǎn)
- 高考數(shù)學(xué)空間幾何體三視圖知識點(diǎn)
- 高考數(shù)學(xué)排列重點(diǎn)知識點(diǎn)
- 高考數(shù)學(xué)通道抽樣知識點(diǎn)
高考院校庫(挑大學(xué)·選專業(yè),一步到位。
高校分?jǐn)?shù)線
專業(yè)分?jǐn)?shù)線
- 日期查詢