全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號(hào)

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復(fù)習(xí) > 高考知識(shí)點(diǎn) > 高考數(shù)學(xué)知識(shí)點(diǎn) > 高考數(shù)學(xué)一輪復(fù)習(xí)集合與函數(shù)概念知識(shí)點(diǎn)

高考數(shù)學(xué)一輪復(fù)習(xí)集合與函數(shù)概念知識(shí)點(diǎn)

來源:網(wǎng)絡(luò)資源 2019-05-06 15:10:00

  集合(簡(jiǎn)稱集)是數(shù)學(xué)中一個(gè)基本概念,它是集合論的研究對(duì)象,集合論的基本理論直到19世紀(jì)才被創(chuàng)立。以下是高考數(shù)學(xué)一輪復(fù)習(xí)集合與函數(shù)概念知識(shí)點(diǎn),一起來復(fù)習(xí)吧~

  例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年1918年,德國數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

  集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。

  元素與集合的關(guān)系

  元素與集合的關(guān)系有屬于與不屬于兩種。

  集合與集合之間的關(guān)系

  某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性!赫f明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號(hào)下加了一個(gè)符號(hào)(如右圖),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集!

  集合的幾種運(yùn)算法則

  并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作AB(或BA),讀作A并B(或B并A),即AB={x|xA,或xB}交集:以屬于A且屬于B的元差集表示

  素為元素的集合稱為A與B的交(集),記作AB(或BA),讀作A交B(或B交A),即AB={x|xA,且xB}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因?yàn)锳和B中都有1,5,所以AB={1,5}。再來看看,他們兩個(gè)中含有1,2,3,5這些個(gè)元素,不管多少,反正不是你有,就是我有。那么說AB={1,2,3,5}。圖中的陰影部分就是AB。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個(gè)。結(jié)果是3,5,7每項(xiàng)減集合

  1再相乘。48個(gè)。對(duì)稱差集:設(shè)A,B為集合,A與B的對(duì)稱差集A?B定義為:A?B=(A-B)(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對(duì)稱差運(yùn)算的另一種定義是:A?B=(AB)-(AB)無限集:定義:集合里含有無限個(gè)元素的集合叫做無限集有限集:令N*是正整數(shù)的全體,且N_n={1,2,3,n},如果存在一個(gè)正整數(shù)n,使得集合A與N_n一一對(duì)應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│xA,x不屬于B}。注:空集包含于任何集合,但不能說空集屬于任何集合。補(bǔ)集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補(bǔ)集,記作CuA,即CuA={x|xU,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補(bǔ)集。CuA={3,4}。在信息技術(shù)當(dāng)中,常常把CuA寫成~A。

  集合元素的性質(zhì)

  1.確定性:每一個(gè)對(duì)象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如個(gè)子高的同學(xué)很小的數(shù)都不能構(gòu)成集合。這個(gè)性質(zhì)主要用于判斷一個(gè)集合是否能形成集合。2.獨(dú)立性:集合中的元素的個(gè)數(shù)、集合本身的個(gè)數(shù)必須為自然數(shù)。3.互異性:集合中任意兩個(gè)元素都是不同的對(duì)象。如寫成{1,1,2},等同于{1,2}。互異性使集合中的元素是沒有重復(fù),兩個(gè)相同的對(duì)象在同一個(gè)集合中時(shí),只能算作這個(gè)集合的一個(gè)元素。4.無序性:{a,b,c}{c,b,a}是同一個(gè)集合。5.純粹性:所謂集合的純粹性,用個(gè)例子來表示。集合A={x|x2},集合A中所有的元素都要符合x2,這就是集合純粹性。6.完備性:仍用上面的例子,所有符合x2的數(shù)都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應(yīng)的。

  集合有以下性質(zhì)

  若A包含于B,則AB=A,AB=B

  集合的表示方法

  集合常用大寫拉丁字母來表示,如:A,B,C而對(duì)于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c拉丁字母只是相當(dāng)于集合的名字,沒有任何實(shí)際的意義。將拉丁字母賦給集合的方法是用一個(gè)等式來表示的,例如:A={}的形式。等號(hào)左邊是大寫的拉丁字母,右邊花括號(hào)括起來的,括號(hào)內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。

  常用的有列舉法和描述法。1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號(hào)內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,}2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號(hào)或式子等描述出來﹐寫在大括號(hào)內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個(gè)集合的元素的共同屬性)如:小于的正實(shí)數(shù)組成的集合表示為:{x|04.自然語言常用數(shù)集的符號(hào):(1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱非負(fù)整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N*(2)非負(fù)整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負(fù)整數(shù)集內(nèi)也排除0的集,稱負(fù)整數(shù)集,記作Z-(3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z(4)全體有理數(shù)的集合通常簡(jiǎn)稱有理數(shù)集,記作Q。Q={p/q|pZ,qN,且p,q互質(zhì)}(正負(fù)有理數(shù)集合分別記作Q+Q-)(5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱實(shí)數(shù)集,記作R(正實(shí)數(shù)集合記作R+;負(fù)實(shí)數(shù)記作R-)(6)復(fù)數(shù)集合計(jì)作C集合的運(yùn)算:集合交換律AB=BB=BA集合結(jié)合律(AC=AC)(AC=AC)集合分配律AC)=(A(AC)AC)=(A(AC)集合德。

  摩根律集合

  Cu(AB)=CuACuBCu(AB)=CuACuB集合容斥原理在研究集合時(shí),會(huì)遇到有關(guān)集合中的元素個(gè)數(shù)問題,我們把有限集合A的元素個(gè)數(shù)記為card(A)。例如A={a,b,c},則card(A)=3card(AB)=card(A)+card(B)-card(AB)card(AC)=card(A)+card(B)+card(C)-card(AB)-card(BC)-card(CA)+card(AC)1885年德國數(shù)學(xué)家,集合論創(chuàng)始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。集合吸收律AB)=AAB)=A集合求補(bǔ)律ACuA=UACuA=設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)(A-C)A-(BC)=(A-B)U(A-C)~(BUC)=~B~C~(BC)=~BU~C~=E~E=特殊集合的表示復(fù)數(shù)集C實(shí)數(shù)集R正實(shí)數(shù)集R+負(fù)實(shí)數(shù)集R-整數(shù)集Z正整數(shù)集Z+負(fù)整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負(fù)有理數(shù)集Q-不含0的有理數(shù)集Q*

收藏

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢

京ICP備10033062號(hào)-2 北京市公安局海淀分局備案編號(hào):1101081950

違法和不良信息舉報(bào)電話:010-56762110     舉報(bào)郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 revolutshibainupartnership.com . All Rights Reserved