高二數(shù)學(xué)復(fù)習(xí)方法:數(shù)學(xué)立體幾何學(xué)習(xí)方法與技巧
2019-04-23 08:38:15網(wǎng)絡(luò)資源
一、逐漸提高邏輯論證能力
論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實(shí)基礎(chǔ)
直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的證明在出學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。掌握好定理有以下三點(diǎn)好處:
(1)深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
(2)培養(yǎng)空間想象力。
。3)得出一些解題方面的啟示。
在學(xué)習(xí)這些內(nèi)容的時(shí)候,可以用筆、直尺、書之類的東西搭出一個(gè)圖形的框架,用以幫助提高空間想象力。對(duì)后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。
三、“轉(zhuǎn)化”思想的應(yīng)用
我個(gè)人覺得,解立體幾何的問題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。