Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高中頻道 > 高一數(shù)學(xué)學(xué)習(xí)方法 > 高一數(shù)學(xué)學(xué)習(xí)方法:函數(shù)值域必修

高一數(shù)學(xué)學(xué)習(xí)方法:函數(shù)值域必修

2019-04-13 16:47:00網(wǎng)絡(luò)資源


高考

  一.觀察法

  通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。

  例1求函數(shù)y=3+√(2-3x) 的值域。

  點(diǎn)撥:根據(jù)算術(shù)平方根的性質(zhì),先求出√(2-3x) 的值域。

  解:由算術(shù)平方根的性質(zhì),知√(2-3x)≥0,

  本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。

  求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})

  二.反函數(shù)法

  當(dāng)函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。

  例2求函數(shù)y=(x+1)/(x+2)的值域。

  點(diǎn)撥:先求出原函數(shù)的反函數(shù),再求出其定義域。

  解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域為y≠1的實(shí)數(shù),故函數(shù)y的值域為{y?y≠1,y∈R}。

  求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域為{y?y<-1 y="">1})

  三.配方法

  當(dāng)所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復(fù)合函數(shù)時,可以利用配方法求函數(shù)值域

  例3:求函數(shù)y=√(-x2+x+2)的值域。

  點(diǎn)撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的最值求。

  解:由-x2+x+2≥0,可知函數(shù)的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]

  求函數(shù)y=2x-5+√15-4x的值域.(答案:值域為{y?y≤3})

  四.判別式法

  若可化為關(guān)于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。

  例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。

  點(diǎn)撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應(yīng)用二次方程根的判別式,從而確定出原函數(shù)的值域。

  解:將上式化為(y-2)x2-(y-2)x+(y-3)=0 (*)

  當(dāng)y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2

  求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。

  五.最值法

  對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域。

  例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。

  點(diǎn)撥:根據(jù)已知條件求出自變量x的取值范圍,將目標(biāo)函數(shù)消元、配方,可求出函數(shù)的值域。

  解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

  ∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。

  當(dāng)x=-1時,z=-5;當(dāng)x=3/2時,z=15/4。

  若√x為實(shí)數(shù),則函數(shù)y=x2+3x-5的值域為 ( )

  A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)

最新高考資訊、高考政策、考前準(zhǔn)備、高考預(yù)測、志愿填報、錄取分?jǐn)?shù)線等

  高考時間線的全部重要節(jié)點(diǎn)

  盡在"高考網(wǎng)"微信公眾號

       

[標(biāo)簽:高一數(shù)學(xué) 學(xué)習(xí)方法]

分享:

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 高考


高考關(guān)鍵詞