高中數(shù)學有哪些快速解題法
2018-09-30 08:55:20育路教育網(wǎng)
高中數(shù)學快速解題法:數(shù)形結(jié)合
數(shù)與形是數(shù)學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以相互轉(zhuǎn)化。中學數(shù)學研究的對象可分為數(shù)和形兩大部分,數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結(jié)合,或形數(shù)合。作為一種數(shù)學思想方法,數(shù)形結(jié)合的應用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,或者借助形的幾何直觀性來闡明數(shù)之間某種關系,即數(shù)形結(jié)合包括兩個方面:第一種情形是“以數(shù)解形”,而第二種情形是“以形助數(shù)”。“以數(shù)解形”就是有些圖形太過于簡單,直接觀察卻看不出什么規(guī)律來,這時就需要給圖形賦值,如邊長、角度等。
高中數(shù)學快速解題法:等價轉(zhuǎn)化
轉(zhuǎn)化是數(shù)學中最常用的思想。其精髓在于將未知的、陌生的、復雜的問題通過演繹歸納轉(zhuǎn)化為已知的、熟悉的、簡單的問題。三角函數(shù)、幾何變換、因式分解,解析幾何、微積分、平行四邊形、三角形、梯形以及圓的面積公式推導,乃至古代數(shù)學的尺規(guī)作圖等數(shù)學理論無不滲透著轉(zhuǎn)化的思想。常見的轉(zhuǎn)化方式有:一般—特殊轉(zhuǎn)化、等價轉(zhuǎn)化、復雜—簡單轉(zhuǎn)化、數(shù)形轉(zhuǎn)化、構(gòu)造轉(zhuǎn)化、聯(lián)想轉(zhuǎn)化、類比轉(zhuǎn)化等。
高中數(shù)學快速解題法:類比
數(shù)學解題與數(shù)學發(fā)現(xiàn)一樣,通常都是在通過類比、歸納等探測性方法進行探測的基礎上,獲得對有關問題的結(jié)論或解決方法的猜想,然后再設法證明或否定猜想,進而達到解決問題的目的.類比、歸納是獲得猜想的兩個重要的方法。