高一數學《空間點、直線、平面的位置關系》知識點總結
2011-08-25 11:12:29百度文庫
本節(jié)內容主要是空間點、直線、平面之間的位置關系,在認識過程中,可以進一步提高同學們的空間想象能力,發(fā)展推理能力.通過對實際模型的認識,學會將文字語言轉化為圖形語言和符號語言,以具體的長方體中的點、線、面之間的關系作為載體,使同學們在直觀感知的基礎上,認識空間中點、線、面之間的位置關系,點、線、面的位置關系是立體幾何的主要研究對象,同時也是空間圖形最基本的幾何元素.
重難點知識歸納
1、平面
(1)平面概念的理解
直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.
抽象的理解:平面是平的,平面是無限延展的,平面沒有厚。
(2)平面的表示法
、賵D形表示法:通常用平行四邊形來表示平面,有時根據實際需要,也用其他的平面圖形來表示平面.
、谧帜副硎荆撼S玫认ED字母表示平面.
(3)涉及本部分內容的符號表示有:
①點A在直線l內,記作; 、邳cA不在直線l內,記作;
③點A在平面內,記作; 、茳cA不在平面內,記作;
⑤直線l在平面內,記作; 、拗本l不在平面內,記作;
注意:符號的使用與集合中這四個符號的使用的區(qū)別與聯系.
(4)平面的基本性質
公理1:如果一條直線的兩個點在一個平面內,那么這條直線上的所有點都在這個平面內.
符號表示為:.
注意:如果直線上所有的點都在一個平面內,我們也說這條直線在這個平面內,或者稱平面經過這條直線.
公理2:過不在一條直線上的三點,有且只有一個平面.
符號表示為:直線AB存在唯一的平面,使得.
注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點確定一個平面.
公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
符號表示為:.
注意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線.若平面、平面相交于直線l,記作.
公理的推論:
推論1:經過一條直線和直線外的一點有且只有一個平面.
推論2:經過兩條相交直線有且只有一個平面.
推論3:經過兩條平行直線有且只有一個平面.
2.空間直線
(1)空間兩條直線的位置關系
①相交直線:有且僅有一個公共點,可表示為;
、谄叫兄本:在同一個平面內,沒有公共點,可表示為a//b;
、郛惷嬷本:不同在任何一個平面內,沒有公共點.
(2)平行直線
公理4:平行于同一條直線的兩條直線互相平行.
符號表示為:設a、b、c是三條直線,.
定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等.
(3)兩條異面直線所成的角
注意:①兩條異面直線a,b所成的角的范圍是(0°,90°].
、趦蓷l異面直線所成的角與點O的選擇位置無關,這可由前面所講過的“等角定理”直接得出.
、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法:
(i)在空間任取一點,這個點通常是線段的中點或端點.
(ii)分別作兩條異面直線的平行線,這個過程通常采用平移的方法來實現.
(iii)指出哪一個角為兩條異面直線所成的角,這時我們要注意兩條異面直線所成的角的范圍.
3.空間直線與平面
直線與平面位置關系有且只有三種:
(1)直線在平面內:有無數個公共點;
(2)直線與平面相交:有且只有一個公共點;
(3)直線與平面平行:沒有公共點.
4.平面與平面
兩個平面之間的位置關系有且只有以下兩種:
(1)兩個平面平行:沒有公共點;
(2)兩個平面相交:有一條公共直線.