π的歷史
來源:網(wǎng)絡(luò)來源 2009-08-30 10:45:05
圓的周長與直徑之比是一個常數(shù),人們稱之為圓周率。通常用希臘字母"π"來表示。1706年,英國人瓊斯首次創(chuàng)用π代表圓周率。他的符號并未立刻被采用,以后,歐拉予以提倡,才漸漸推廣開來,F(xiàn)在π已成為圓周率的專用符號,π的研究,在一定程度上反映這個地區(qū)或時代的數(shù)學水平,它的歷史是饒有趣味的。
在古代,實際上長期使用π=3這個數(shù)值,巴比倫、印度、中國都是如此。到公元前2世紀,中國的《周髀算經(jīng)》里已有周三徑一的記載。東漢的數(shù)學家又將值改為根號10(約為3.16)。真正使圓周率計算建立在科學的基礎(chǔ)上,首先應(yīng)歸功于阿基米德。他專門寫了一篇論文《圓的度量》,用幾何方法證明了圓周率與圓直徑之比小于三又七分之一而大于三又七十一分之十。這是第一次在科學中創(chuàng)用上、下界來確定近似值。第一次用正確方法計算π值的,是魏晉時期的劉徽,在公元263年,他創(chuàng)用了用圓的內(nèi)接正多邊形的面積來逼近圓面積的方法,算得π值為3.14。我國稱這種方法為"割圓術(shù)"。直到1200年后,西方人才找到了類似的方法。后人為紀念劉徽的貢獻,將3.14稱為徽率。
公元460年,南朝的祖沖之利用劉徽的割圓術(shù),把π值算到小點后第七位3.1415926,這個具有七位小數(shù)的圓周率在當時是世界首次。祖沖之還找到了兩個分數(shù):22/7和113/355,用分數(shù)來代替π,極大地簡化了計算,這種思想比西方也早一千多年。
祖沖之的圓周率,保持了一千多年的世界記錄。終于在1596年,由荷蘭數(shù)學家盧道夫打破了。他把π值推到小數(shù)點后第15位小數(shù),最后推到第35位。為了紀念他這項成就,人們在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288這個數(shù),從此也把它稱為"盧道夫數(shù)"。
之后,西方數(shù)學家計算的工作,有了飛速的進展。1948年1月,費格森與雷思奇合作,算出808位小數(shù)的π值。計算機問世后,π的人工計算宣告結(jié)束。20世紀50年代,人們借助計算機算得了10萬位小數(shù)的π值,70年代又突破這個記錄,算到了150萬位。到90年代初,用新的計算方法,算到的值已到了4.8億位。π的計算經(jīng)歷了幾千年的歷史,它的每一次重大進步,都標志著技術(shù)和算法的革新。
-
相關(guān)推薦
高考院校庫(挑大學·選專業(yè),一步到位!)
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢